Chances and Challenges of liquid biomethane
Feasibility of a new pathway for biogas use

Frank Scholwin, Johan Grope (Institut für Biogas, Kreislaufwirtschaft und Energie)

21.1.2014 Berlin

Institute for Biogas, Waste Management and Energy

Scientific Consulting
Expert reviews

virtual institute
Prof. Frank Scholwin, Johan Grope & associated experts

Biogas technology
Energy
Waste Management

Long term experiences in consulting and research.
National and international multidisciplinary network.

Services for systems integration.
Networking.
Knowledge Transfer.
Publication.

© 2014 Institute for Biogas, Waste Management & Energy, Prof. Dr.-Ing. Frank Scholwin
www.biogasundenergie.de
Introduction

• Production and use of liquified natural gas (LNG) increases
• Liquefaction of biogas is possible after upgrading to biomethane – the product is liquefied biogas (LBG)
• Processes are equivalent with liquefaction of natural gas but in a much smaller scale
• LBG-production is working only in few pilot plants (e.g. Lidköping, Sweden; Albury, UK)

LBG: Pro & Con

• Advantages of LBG
 • Increased energy density (5-fold compared with CBG)
 • Less Volume and weight of tanks (in vehicles)
 • Much longer activity ranges, up to 2,000 km for trucks
 • Reduction of greenhouse gas emissions compared with fossil alternatives (e.g. 85 % reduction when gas comes from waste against diesel)
 • Energy storage in the energy market
 • Increasing number of LNG-applications (e.g. blue corridor and others)
 • Diversification of biomethane applications and marketing routes
 • Decentralised fuel supply
LBG: Pro & Con

- Disadvantages of LBG
 - Additional energy demand for LBG production and storage
 - Additional technology demand
 - -> feasibility needs advantages shown; minimum necessary range for trucks: 500 km

Challenges

- Requirements for biomethane quality [Flynn 2005], but this is depending on the technology:
 - \(H_2O: 0,5 \text{ ppm} \)
 - \(H_2S: 3,5 \text{ ppm} \)
 - \(CO_2: 50 \text{ bis } 125 \text{ ppm} \)
- Requirements regarding operational safety
- Tax exemptions and certification
- Combination of upgrading technologies and liquefaction shows optimisation potentials
Increased efficiency is possible!

- Primary energy demand for liquefaction: 12 to 23% Biogas
- Combination of existing upgrading technologies with a mixed refrigerant process are most efficient today
- Others: little practical experience
- Major impacts on overall efficiency:
 - use of low value excess heat
 - combination of technologies (pressure and gas quality)
 - methane losses

![Bar chart showing different technologies and their efficiency.](chart.png)

LBG supply costs

- biogas production: 5.0 - 6.0 ct/kWh
- biogas upgrading: 1.5 - 2.5 ct/kWh
- Biomethane liquefaction: 2.0 - 3.5 ct/kWh

LBG net costs: 8.5 bis 13 ct/kWh (without any incentive)

→ Comparison with diesel:
 - gross price: 11.5 ct/kWh
 - incl. mineral oil tax, without VAT

Chances for competitiveness:

- Tax exemptions (Diesel fuel mineral oil tax: 4.5 ct/kWh)
- Biofuel quota (in 2012: 2.1 - 2.7 ct/kWh)
- Cost reduction potentials resulting from technology development
Vehicles with LBG technology available

- **Volvo**
 - *Volvo FM Methan-Diesel*
 - **Technische Daten**
 - **capacity** 338 kW (460 PS)
 - **max. torque** 2.300 Nm at 1.100 - 1.400 U/min
 - **Tank** 126 kg LNG (+ 150 or 330 l Diesel)
 - **Operation range** ca. 600 - 1.000 km

- **Iveco**
 - *Stralis LNG*
 - **Technische Daten**
 - **capacity** 243 kW (330 PS)
 - **max. torque** 1.400 Nm at 1.080 - 1.660 U/min
 - **Tank** 200 kg LNG + 48 kg CNG
 - **Operation range** ca. 750 km

- **Mercedes**
 - *Econic LNG large capacity lightweight stainless steel tanks. Option: two tanks.*
 - **Technical specifications**
 - **capacity** 205 kW (279 PS)
 - **max. torque** 1.000 Nm at 1.400 U/min
 - **Tank** ca. 162 kg LNG (1 tank) ca. 324 kg LNG (2 tanks)
 - **Operation range** not given

source: erdgasmobil

© 2014 Institute for Biogas, Waste Management & Energy, Prof. Dr.-Ing. Frank Scholwin
www.biogasundenergie.de

LBG-plant - Lidköping

- **LBG and CBG from bio waste**
- **operating since April 2012**
- **Investment:** 20 Mio. €
- **capacity:** 50 GWh/a LBG + 10 GWh/a CBG
- **80.000 t/a biofertilizer**

© 2014 Institute for Biogas, Waste Management & Energy, Prof. Dr.-Ing. Frank Scholwin
www.biogasundenergie.de
LBG-plant - Albury

- LBG from landfill gas
- operating since June 2008
- capacity: 5,000 to/a LBG or 6 million diesel litres equivalent
- product offered\(^1\): 15 % LBG, 85 % LNG
- 20 % CO\(_2\) savings compared to diesel\(^1\)
- 20 % cost savings compared to diesel\(^1\)

\(^1\) gasrec: Future-Proof-Fuels-Handbook-2013

Local feasibility study

- Typical biomethane project – local added value possible!
Local feasibility study

• Simple & efficient small scale solution possible!

Challenges:
• new technology, new fuel, new vehicle technology
• Competition with Agro-diesel
Biogas & Biomethane – key technologies in the future energy and nutrient circulation systems

More on biomethane:

REGATEC 2014
Bringing technology and industry together

1st International Conference on Renewable Energy Gas Technology
22-23 May 2014; Malmö, Sweden
www.regatec.org

- Baltc Biogas experts network:
 IBBA Inter Baltic Biogas Arena
 www.ibba.se

Get Sponsor, Exhibitor or Participant!

Prof. Dr.-Ing. Frank Scholwin
Dipl.-Ing. Johan Grope
Institute for Biogas, Waste Management & Energy
www.biogasundenergie.de
Henssstraße 9, D-99423 Weimar
Tel +49 (0)3643 - 7 40 23 64
Mobil +49 (0)177 - 2 88 56 23
Fax +49 (0)3643 - 7 40 23 63
scholwin@biogasundenergie.de

© 2014 Institute for Biogas, Waste Management & Energy, Prof. Dr.-Ing. Frank Scholwin
www.biogasundenergie.de